(5S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one as a Highly Effective Chiral Auxiliary for Asymmetric Reduction of a-0x0 Amides

lgor Solodin,* Yuri Goldberg, Gunārs Zelčāns, and Edmunds Lukevics

Institute of Organic Synthesis, Latvian Academy of Sciences, 226006 Riga, USSR

Reduction of the α -oxo amide derived from phenylglyoxylic acid, containing (5S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one as a chiral auxiliary, with NaBH4 or *via* fluoride ion-induced hydrosilylation with HSiMe₂Ph was found to proceed with 90-100% diastereoselectivity.

Reduction of α -oxo acid derivatives bearing the appropriate chiral auxiliary is the conventional route to optically active α -hydroxy-acids.^{1,2} Recently the asymmetric reduction of chiral α -oxo amides bearing a heterocycle as the chiral auxiliary (proline, 3.4 trans- $2,5$ -disubstituted pyrrolidines⁵) has been studied. This seems to be a promising approach owing to the well known planarity of the amide group and, consequently, the lower number of possible conformers in the transition state than with chiral α -oxo esters. We studied the reduction of the α -oxo amide $(5S)$ - (2) (Scheme 1) derived from phenylglyoxylic acid and containing (5S)-5-benzyl-2,2,3 trimethylimidazolidin-4-one6 as a chiral auxiliary. Until now, this auxiliary has not been employed for asymmetric reduction. The chiral heterocycle $(5S)-(1)$ was prepared in 82% yield by the reaction of (S) - β -phenyl- α -alanine N-methylamide⁷ and acetone (1.5 equiv.) by refluxing in dimethylformamide (DMF) (10 h). Subsequent N-acylation with PhCO-COCl⁸ gave the α -oxo amide $(5S)-(2)$ [†] in 72% yield. Reduction of **(5S)-(2)** with NaBH4 **(0.75** equiv.) in dimethoxyethane (DME) (25 °C) gives a mixture of α -hydroxy amides *(5S,* 2'R)-(3) and *(5S,* 2'S)-(3) in good yield with a considerable excess of one of the diastereoisomers (90.5 : 9.5).

'1'0 determine the direction of asymmetric induction an alternative synthesis of authentic *(5S,* 2'R)-(3) was carried out [i, (R) -PhCH(OH)CO₂H (1 equiv.), $(COCl)_2$ (1 equiv.), CH_2Cl_2 , $25^{\circ}C$, 1 h; ii, $(5S)-(1)$ (1 equiv.), Et₃N (2 equiv.), CH₂Cl₂, 0° C. The sample obtained in this way, $(5S, 2'R)$ - (3) and the predominant diastereoisomer obtained from the reduction of the α -oxo amide $(5S)-(2)$ with NaBH₄ were identical ('H NMR, m.p., HPLC retention time). The α -hydroxy amide (5S, $2\bar{R}$)-(3) can easily be isolated by crystallization (twice) from ether; the a-hydroxy amide *(5S,* $2'S$)-(3) was isolated from the filtrates by preparative HPLC on silica (eluent dioxane-hexane, 25 : *75).* t

Thus, reduction of the α -oxo amide (5S)-(2) with NaBH₄ proceeds with high diastereoselectivity which was comparable

with the best results achieved when $(2R, 5R)$ -trans-2,5-bis-**(methoxymethoxymethy1)pyrrolidine** was used as chiral auxiliary and $KB(OPrⁱ)₃H$, which is difficult to obtain, was used as a reducing agent.5 **As** regards the direction of asymmetric induction in this reaction, it is obvious that, as in the case of reduction of other chiral α -oxo amides with different complex hydrides,⁵ the hydride ion attacks the less hindered side of the α -carbonyl atom of the predominant *trans*-coplanar conformer **(5S)-(2)** (Scheme 2).

On the other hand, during the reduction of $(-)$ -menthyl phenylglyoxylate *via* hydrosilylation with diarylsilanes catalysed by rhodium complexes, the direction of asymmetric induction is opposite to that occurring during the reduction by hydrides⁹ and gives (S) -mandelic acid¹⁰ after hydrolysis. This difference has been assumed to be due to the fact that the two carbonyl groups of phenylglyoxylate are in a cis-coplanar

Scheme 1. *Reagents and conditions: i, PhCOCOCl* (1 equiv.), Et₃N (1 equiv.), CH2C12, 0°C; ii, NaBH4 *(0.75* equiv.), DME, 25°C; iii, HSiMe2Ph (4 equiv.), CsF *(5* mol%), 18-crown-6 *(5* mol%), CH2C12, 25 °C; iv, HCI, $\text{Me}_2\text{C}=O$.

 \uparrow Compound (5S)-(1), viscous oil; $[\alpha]_D^{25} - 48.7^\circ$ (c 2.92, EtOH); IR (neat) v/cm-l3330, 2980, 1645,1405, 1370; lH NMR (CDC13) **6** 1.16 and 1.27 (each s. 3H, NCMe2N), 1.87 (br.s. lH, NH), 2.74 *(s,* 3H, NMe), $3.00-3.13$ (m, $2H$, PhC $H₂$), $3.71-3.87$ (m, $1H$, CHCO), 7.25 (s, 5H, Ph).

Compound (5S)-(2), m.p. 103---105 °C; $[\alpha]_D^{25} + 268.4$ ° (c 2.06, EtOH); IR (Nujol) v/cm⁻¹ 1740, 1685, 1635, 1235; ¹H NMR (CDCl₃) *6* 0.82 and 1.73 (each s, 3H, NCMeZN), 2.62-3.38 **(rn,** 2H, PhCH2), 2.71 (s, 3H, NMe), 4.62-4.75 (m, 1H, CHCO), 6.98-8.18 (m, 10H, 2Ph).

Compound (5S, 2'R)-(3) m.p. 159-160 °C; $[\alpha]_d^{25}$ + 48.8° *(c* 5.28, EtOH); IR (CCl_4) v/cm⁻¹ 3440, 2950, 1720, 1665, 1370; ¹H NMR (CD3SOCD3-D20) 6 0.56 and 1.29 (each **s,** 3H, NCMe2N), 2.53 **(s,** 3H, NMe), 3.02–3.47 (m, 2H, PhCH₂), 4.29–4.44 (m, 1H, CHCO), 5.47 **(s,** lH, CHOH). 7.02-7.53 (m, 10H, 2Ph). Compound (5S, v/cm⁻¹ 3410, 2945, 1715, 1660, 1370; ¹H NMR (CD₃SOCD₃-D₂O) **6** 0.58 and 1.47 (each **s,** 3H, NCMeZN), 2.56 **(s,** 3H, NMe), 3.04-3.18 $(m, 2H, PhCH₂)$, 4.80--5.00 $(m, 1H, CHCO)$, 5.38 (s, 1H, CHOH), 6.62-7.60 (m, 10H, 2Ph). 2'S)-(3), m.p. 113-115 °C; $[\alpha]_D^{25} + 112.5$ ° (c 1.06, EtOH); IR (CCl₄)

conformation during the reaction, and are chelated in the rhodium complex.^{9,10} The hydrosilylation of the α -oxo amide $(5S)$ -(2) by diphenylsilane with rhodium complexes $\{RhCl(PPh₃)₃, \{Rh(norbornadiene)(PPh₃)₂\} + PF₆$ - $[Rh(norbornadiene)(PPh₃)₂]$ ⁺ $PF₆$ ⁻, $[Rh(cyclo-octadiene)Cl]_2$ fails to occur. Fluoride ion-induced hydrosilylation¹¹ of (5S)-(2) by dimethylphenylsilane in the presence of 18-crown-6 proceed stereospecifically to give (after desilylation) *(5S,* 2'R)-(3) in 40% yield (chemoselectivity 100%). Thus, the direction of asymmetric induction in this reaction is consistent with that in the reduction of *(5S)-(2)* by NaBH4 [predominant formation of (2'R)-hydroxy amide]. In our opinion, this confirms the above stereochemical model, since it is known¹² that fluoride ion-catalysed hydrosilylation of the C=O bond of carbonyl compounds involves nucleophilic attack of this bond by the five-coordinated organosilicon intermediate $[HSiR_3F]$ ⁻.

Thus, the reduction of the α -carbonyl group of the α -oxo amide in high asymmetric yield indicates the high stereodifferentiating ability of **(5S)-5-benzyl-2,2,3-trimethylimidazol**idin-4-one in the reactions studied.

Received, *13th* June *1990; Corn. 01026401*

References

- 1 **J.** D. Morrison and H. **S.** Mosher, 'Asymmetric Organic Reactions,' Prentice Hall, Englewood Cliffs, New Jersey, 1971, ch. **2.**
- **2** K. Harada, in 'Asymmetric Synthesis,' ed. **J.** D. Morrison, Academic Press, New York, 1985, vol. *5,* p. 345.
- 3 K. Harada and H. Hasegawa, *J. Chem. SOC., Perkin Trans. I,* 1985, 769.
- 4 K. Soai, T. Isoda, H. Hasegawa, and M. Ishizaki, *Chem. Lett.,* 1986, 1897.
- 5 Y. Kawanami, **I.** Fujita, Y. Taniguchi, T. Katsuki, and M. Yamaguchi, *Chem. Lett.,* 1987, **2021.**
- 6 For applicability of imidazolidin-4-one derivatives, easily available from natural amino acids, in asymmetric synthesis see: R. Polt and D. Seebach, *J. Am. Chem. SOC.,* 1989, **111,** 2622; M. Gander-Coquoz and D. Seebach, *Helv. Chim. Acta,* 1988,71, **224.**
- 7 V. Santi and P. **V.** Danenberg, *Biochemistry,* 1971, 10, 4813.
- 8 Beilsteins Handbuch der Organischen Chemie, EI vol. 10, p. 314.
- 9 A. Horeau, H. B. Kagan, and J.-P. Vigneron, *Bull. Soc. Chim. Fr.,* 1968, 3795.
- 10 1. Ojima and **Y.** Nagai, *Chem. Lett.,* 1975, 191; I. Ojima, T. Kogure, and M. Kumagai, *J. Org. Chem.,* 1977,42, 1671.
- 11 Yu. Goldberg, E. Abele, M. Shymanska, and E. Lukevics, *J. Organomet. Chem.,* 1989,372, C9.
- 12 **M.** Fujita and T. Hijama, *J. Org. Chem.,* 1988,53,5405; D. Yang and D. D. Tanner, *ibid.,* 1986, **51,** 2267.